Foreword

This manual describes dismantling operations and important safety related warnings and cautions for this vehicle.

This vehicle is equipped with a high voltage Lithium-ion (Li-ion) battery pack. Failure to follow recommended practices during dismantling will cause death or serious personal injury.

Please read this manual in advance of any dismantling activities in order to understand the features of this vehicle and to help you deal with dismantling operations involving this vehicle. Follow the procedures in order to help assure a safe and successful dismantling operation.

This manual is periodically updated. If you are not viewing this manual on the INFINITI web site, we urge you to go to www.infinitiusa.com or www.infiniti-techinfo.com to make sure you have the most recent version of this manual.

INFINITI EMERGENCY CONTACT INFORMATION

- 1-800-662-6200 (US) or 1-800-361-4792 (Canada)
- Hours of operation are 8am-5pm (Monday-Friday) Eastern, Central and Pacific time zones

IMPORTANT INFORMATION ABOUT THIS MANUAL

You may see various symbols in this manual. They have the following meanings:

⚠️ DANGER

This symbol is used to inform you of an operation which will result in death or serious personal injury if instructions are not followed.

Example: Touching high voltage components without using the appropriate protective equipment will result in electrocution. PPE must always be worn when touching or working on high voltage components.

⚠️ WARNING

This symbol is used to inform you of an operation which may cause death or serious personal injury if instructions are not followed.

⚠️ CAUTION

This symbol is used to inform you of an operation which may cause personal injury or component damage if instructions are not followed.

Please note that there may be differences between this manual and the vehicle specification due to specification changes.
Table of Contents

FOREWORD ... DG–2

INFINITI EMERGENCY CONTACT INFORMATION DG–2

IMPORTANT INFORMATION ABOUT THIS MANUAL DG–2

1. ABOUT THE QX60 HYBRID .. DG–5
 1-1 QX60 HYBRID IDENTIFICATION DG–6
 1-1.1. EXTERIOR AND ENGINE COMPARTMENT DG–6
 1-1.2. INTERIOR .. DG–7
 1-2 VEHICLE IDENTIFICATION NUMBER (VIN) LAYOUT DG–8
 1-3 WARNING AND INDICATOR LAMP INFORMATION DG–9

2. BASIC HIGH VOLTAGE INFORMATION DG–11
 2-1 BATTERY INFORMATION .. DG–11
 2-1.1. 12V BATTERY ... DG–11
 2-1.2. LI-ION BATTERY .. DG–11
 2-2 HIGH VOLTAGE-RELATED AND 12V-RELATED COMPONENT LOCATIONS AND DESCRIPTIONS DG–12
 2-3 LI-ION BATTERY PACK SPECIFICATIONS DG–13
 2-4 HIGH VOLTAGE SAFETY MEASURES DG–14
 2-4.1. WARNING LABEL ... DG–14
 2-5 HIGH VOLTAGE SAFETY SYSTEM DG–15
 2-6 HIGH VOLTAGE CIRCUIT SHUT-OFF SYSTEM DG–16
 2-7 PREVENTING ELECTRICAL SHOCK DG–16

3. PREPARATION FOR DISMANTLING DG–17
 3-1 PREPARATION ITEMS .. DG–18
 3-2 PERSONAL PROTECTIVE EQUIPMENT (PPE) AND INSULATED TOOLS DG–19
 3-2.1. PERSONAL PROTECTIVE EQUIPMENT (PPE) PROTECTIVE WEAR CONTROL DG–19
 3-2.2. DAILY INSPECTION ... DG–19
 3-2.3. INSULATED TOOLS ... DG–19
 3-3 DISCHARGE PROCEDURES .. DG–19
 3-4 HOW TO HANDLE A DAMAGED VEHICLE DG–21
 3-4.1. HIGH VOLTAGE SYSTEM SHUT-DOWN PROCEDURE DG–21
 3-4.2. CUTTING THE VEHICLE BODY DG–31
 3-4.3. WATER SUBMERSION .. DG–34
 3-4.4. VEHICLE FIRE .. DG–34
 3-4.5. LI-ION BATTERY DAMAGE AND FLUID LEAKS DG–35
4. JUMP STARTING ... DG–36
 4-1 JUMP STARTING PROCEDURES DG–37
 4-2 SHIFT SELECTOR LEVER LOCK RELEASE DG–38
5. STORING THE VEHICLE .. DG–39
6. DISMANTLING INFORMATION ... DG–41
 6-1 PRECAUTIONS FOR HANDLING HIGH VOLTAGE LITHIUM-ION (LI-ION) BATTERY DG–41
 6-2 LITHIUM-ION (LI-ION) BATTERY PACK REMOVAL DG–43
 6-2.1 EXPLODED VIEWS .. DG–43
 6-2.2 REMOVAL PROCEDURE ... DG–44
 6-3 LI-ION BATTERY RECYCLING .. DG–49
1. About the QX60 HYBRID

This hybrid electric vehicle (HEV) uses two types of batteries. One is a 12V battery that is the same as the battery in vehicles powered by internal combustion engines. The 12V battery is located under the hood near the driver side headlamp. The other is the Lithium-ion (Li-ion) battery (high voltage) for the traction motor which propels the vehicle. The Li-ion battery is located under the third row seating with service plug access through the cargo area storage bin.

The high voltage Li-ion battery is recharged with an on-board DC/DC converter and generator powered by the engine. Additionally, the vehicle system can recharge the Li-ion battery by converting driving force into electricity while the vehicle is decelerating or being driven downhill. This is called regenerative charging.
1-1 QX60 HYBRID IDENTIFICATION

1-1.1 Exterior and Engine Compartment
Interior components referenced in this manual are as follows:

A. Assist charge gauge
B. READY indicator (green)
C. Energy flow display *1
D. Energy flow display *1
E. Liftgate switch
F. Hood release handle
G. START/STOP switch and on indicator lamp (orange)

*1: This screen may not be displayed due to customer settings. Only one of these screens will display energy flow depending on vehicle optional equipment.
1-2 Vehicle Identification Number (VIN) Layout

In exterior appearance the QX60 HYBRID is nearly identical to the conventional INFINITI QX60 series vehicles.

The vehicle identification number can be located as follows:

Example VIN: 5N1 CLOMN2EC055570

The QX60 HYBRID is identified by the 4th alphanumeric character: C

\[C = \text{QX60 HYBRID} \]

1. VIN plate (visible through windshield)
2. Vehicle certification plate (lower center pillar)
1. Hybrid System Warning Lamp (Orange)
2. READY Indicator (Green)
3. Master Warning Lamp (Orange or Red)
4. Hybrid System Overheated Stop Vehicle Warning (Vehicle Information Display)
<table>
<thead>
<tr>
<th>Lamp Name</th>
<th>Icon</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>READY Indicator (Green)</td>
<td></td>
<td>This lamp is on when the high voltage system is powered up and the vehicle is ready to drive.</td>
</tr>
<tr>
<td>Master Warning Lamp (Orange or Red)</td>
<td></td>
<td>This lamp is on when another warning lamp or message is displayed in the instrument cluster.</td>
</tr>
<tr>
<td>Hybrid System Warning Lamp *1 (Orange)</td>
<td></td>
<td>This lamp is on or blinking when:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Malfunction has occurred in the high voltage system and/or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• High voltage leak to vehicle chassis and/or</td>
</tr>
<tr>
<td></td>
<td></td>
<td>• Emergency shut-off system has been activated. The shut-off system activates in the following conditions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Front and side collisions in which the air bags are deployed.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Certain rear collisions.</td>
</tr>
<tr>
<td></td>
<td></td>
<td>– Certain high voltage system malfunctions.</td>
</tr>
</tbody>
</table>

*1: When this lamp is ON, the READY Indicator will turn OFF.
2. Basic High Voltage Information

2-1 Battery Information

The QX60 HYBRID utilizes two batteries in order to supply both high and low voltage.

2-1.1 12V Battery

- The QX60 HYBRID contains a conventional lead-acid 12 volt battery.
- The 12V battery is located in the front of the vehicle on the left side of the engine compartment, under a trim cover.
- The 12V battery is charged by the Li-ion battery through the DC/DC converter.

2-1.2 Li-ion Battery

- The QX60 HYBRID contains a Li-ion high voltage battery.
- The high voltage battery is mounted in the cargo area under the 3rd row seating, enclosed in a metal case and concealed by trim cover.
- The high voltage battery stores approximately 144 volts DC.
- A vent hose is provided to exhaust gasses outside the vehicle if necessary.
- Air vents (A) are located on the cargo area trim panels for battery cooling.

The high voltage battery supplies power to the following:

- High voltage harnesses
- DC/DC converter
- Traction motor inverter
- Traction motor
2-2 High Voltage-Related and 12V-Related Component Locations and Descriptions

NOTE:

Components with white number in black background are high voltage components.
<table>
<thead>
<tr>
<th>No.</th>
<th>Component</th>
<th>Location</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>DC/DC Converter</td>
<td>Cargo area floor (mounted right of Li-ion battery)</td>
<td>The DC/DC converter reduces the voltage of the Li-ion battery to provide power to the 12V battery in order to operate the vehicle’s electric components (headlights, audio system, etc.).</td>
</tr>
<tr>
<td>2</td>
<td>Service Plug</td>
<td>Cargo area floor (inside storage bin behind access door)</td>
<td>This is used to disable the high voltage system.</td>
</tr>
<tr>
<td>3</td>
<td>Lithium-ion (Li-ion) Battery</td>
<td>Cargo area floor (under 3rd row seating floor trim)</td>
<td>The Li-ion battery stores and outputs DC power (Maximum voltage 144V) needed to propel the vehicle.</td>
</tr>
<tr>
<td>4</td>
<td>Traction Motor</td>
<td>Engine compartment (built-into the transmission)</td>
<td>Converts three-phase alternating current (AC) power to drive power (torque) which propels the vehicle.</td>
</tr>
<tr>
<td>5</td>
<td>Traction Motor Inverter</td>
<td>Engine compartment (front driver side)</td>
<td>Converts the DC power stored in the Li-ion battery to three-phase AC power and controls motor torque (revolution) by regulating the motor current. The inverter has a built in high voltage capacitor.</td>
</tr>
<tr>
<td>6</td>
<td>12V Battery</td>
<td>Engine compartment (front driver side)</td>
<td>A lead-acid battery that supplies power to the low voltage devices.</td>
</tr>
<tr>
<td>7</td>
<td>High Voltage Harness</td>
<td>Cargo area (on Li-ion battery), under floor, engine compartment</td>
<td>Orange-colored power cables carry high DC voltage between each of the high voltage components.</td>
</tr>
</tbody>
</table>

2-3 Li-ion Battery Pack Specifications

<table>
<thead>
<tr>
<th>Li-ion Battery Specifications</th>
</tr>
</thead>
<tbody>
<tr>
<td>Li-ion battery voltage</td>
</tr>
<tr>
<td>Number of Li-ion battery modules in the pack</td>
</tr>
<tr>
<td>Li-ion battery module voltage</td>
</tr>
<tr>
<td>Li-ion battery dimensions</td>
</tr>
<tr>
<td>Li-ion battery weight</td>
</tr>
</tbody>
</table>
2-4 High Voltage Safety Measures

<table>
<thead>
<tr>
<th>Circuit insulation</th>
<th>The high voltage positive (+) and negative (-) circuits are insulated from the metal chassis.</th>
</tr>
</thead>
</table>
| Reducing the risk of electrocution | The high voltage components and harnesses have insulated cases or orange-colored coverings which provide insulation and easy identification.
The high voltage battery case is electrically connected to the vehicle ground. This connection helps protect the vehicle occupants and vehicle dismantlers from high voltage electrical shock. |
| Identification | The high voltage components are labeled “WARNING” similar to label shown below. All high voltage harnesses are coated in orange. |

2-4.1 Warning Label

![Warning Label](image)

HIGH VOLTAGE INSIDE
DO NOT ATTEMPT TO DISASSEMBLE OR REPAIR. ELECTRIC SHOCK MAY OCCUR.
- Avoid contacting the batteries and fluid with eyes, skin or clothes. In the event of a spill, flush with water and seek medical help immediately.
- Keep children away from this unit.
- To avoid explosions or fire which can result in serious injury or death:
 - Do NOT immerse in water or allow condensation to occur within the unit.
 - Do NOT touch with wet hands.
 - Do NOT expose to fire or open flame.
 - Do NOT strike or puncture the battery or its housing.
- For Qualified High Voltage Technicians:
 - Read the Service Manual before repairing or replacing the battery.
- Do not allow metal objects to contact or fall inside the battery. Burns, shock, sparks, explosion or fire may occur due to a sudden increase in internal pressure.

HAUTE TENSION À L’INTÉRIEUR
NE TENTEZ PAS DE DESASSEMBLER OU DE RÉPARER; RISQUE DE CHOC ÉLECTRIQUE.
- Évitez tout contact des batteries et du fluide avec les yeux, la peau ou les vêtements. En cas de renversement, rincez avec de l’eau et consultez un médecin immédiatement.
- Tenez les enfants éloignés de cet équipement.
- Pour éviter une explosion ou un incendie pouvant entraîner des blessures graves, voire mortelles:
 - Ne PAS immerger dans l’eau ou permettre la formation de condensation à l’intérieur.
 - Ne PAS toucher avec les mains mouillées.
 - Ne PAS exposer à une source d’inflammation ou des flammes nues.
 - Ne PAS frapper ou percer la batterie ou son boîtier.
- Pour les techniciens qualifiés pour les circuits haute tension:
 - Lisez le manuel d’entretien avant de réparer ou de remplacer la batterie.
- Ne permettez à aucun objet métallique d’entrer en contact avec la batterie ou de tomber à l’intérieur. Une augmentation soudaine de la pression interne peut entraîner des brûlures, des chocs ou des étincelles, ou causer une explosion ou un incendie.

REINSEIGNEMENTS RELATIFS AU RECYCLAGE DES BATTERIES HAUTE TENSION:
- TRANSPORTER CETTE BATTERIE CONFORMEMENT À TOUTES LES LOIS APPLICABLES.
- POUR DE PLUS AMPLS RENSEIGNEMENTS SUR LE REMPLACEMENT ET LA MISE AU REBUT, S’ASSURER DE COMMUNIQUER AVEC VOTRE CONCESSIONNAIRE NISSAN OU AVEC NISSAN CANADA INC, 5290 ORBITOR DRIVE MISSISSAUGA ON L4W 4Z5 (1 860) 387-0122

AA YIA0010ZZ
2-5 High Voltage Safety System

The high voltage safety system is intended to help keep vehicle occupants and emergency responders safe from high voltage electricity.

- A high voltage fuse provides short circuit protection inside the high voltage battery.
- The high voltage safety system is insulated from the metal chassis.
- Positive and negative high voltage power cables are connected to the high voltage battery and are controlled by normally open system main relays (SMR1 and SMR2). When the vehicle is shut off, the relays stop electrical flow from leaving the high voltage battery. However, it can take approximately ten (10) minutes for the high voltage capacitor to fully discharge.

The high voltage system and high voltage capacitor may remain powered for up to approximately 10 minutes after the vehicle is shut off. Personal Protective Equipment (PPE) must always be worn when touching or working on high voltage components to avoid risk of electrical shock and severe personal injury or death.

- The high voltage battery retains high voltage at all times. PPE must always be worn when touching or working on high voltage components to avoid risk of electrical shock and severe personal injury or death.

- A ground fault monitor continuously monitors for high voltage leakage to the metal chassis while the vehicle is running. If a malfunction is detected, the HPCM (hybrid powertrain control module) will illuminate the hybrid system warning lamp in the instrument cluster.

WARNING
• The high voltage battery relays (SMR1 and SMR2) will automatically open to stop the electrical flow in a front, side or certain rear collisions that are sufficient enough to activate the supplemental restraint system (SRS).

2-6 High Voltage Circuit Shut-Off System

This vehicle is equipped with a system to shut off the current from the Li-ion battery by the following methods:

<table>
<thead>
<tr>
<th>Service plug</th>
<th>Positioned in the right rear area of the Li-ion battery, this plug shuts off the output of high voltage when manually removed.</th>
</tr>
</thead>
<tbody>
<tr>
<td>System main relays (located in the high voltage battery)</td>
<td>Controlled by the ignition switch, these relays are powered by the 12V system and shut off high voltage from the Li-ion battery.</td>
</tr>
<tr>
<td>Emergency shut-off system</td>
<td>In the case of a collision (front and side collisions in which the air bags are deployed, certain rear collisions) or certain system malfunctions this system is designed to shut off the high voltage from the Li-ion battery.</td>
</tr>
</tbody>
</table>

2-7 Preventing Electrical Shock

1. If it is necessary to touch any of the high voltage harnesses or components, always wear appropriate Personal Protective Equipment (PPE) [refer to 3-1 Preparation Items (DG–18)]. Shut off the high voltage system by referring to 3-4.1 High Voltage System Shut-Down Procedure (DG–21).
2. To avoid the risk of electrocution, NEVER touch the inside of the Li-ion battery with bare hands after shutting off the high voltage system. The Li-ion battery maintains charge even though the high voltage system is shut down. PPE must always be worn when touching or working on high voltage components.
3. Cover damaged high voltage components with insulated tape.
3. Preparation for Dismantling

DANGER

- Failure to properly shut down the high voltage electrical system before the Dismantling Procedures are performed will result in serious injury or death from electrical shock. To prevent serious injury or death, NEVER touch high voltage harnesses or components without always wearing appropriate Personal Protective Equipment (PPE). PPE must always be worn when touching or working on high voltage components.

- If it is necessary to touch any of the high voltage harnesses or components you must always wear appropriate PPE to avoid electrical shock. PPE must always be worn when touching or working on high voltage components. Shut down the high voltage system by following the steps outlined in 3-4.1 High Voltage System Shut-Down Procedure (DG–21). Wait approximately ten (10) minutes for complete discharge of the high voltage capacitor after the high voltage system has been shut down.

WARNING

- NEVER assume the QX60 HYBRID is shut OFF simply because it is quiet.

- If it becomes necessary for the dismantler to leave the vehicle, place a “DANGER” sign [for example, refer to 5. Storing the Vehicle (DG–39)] on the vehicle to alert other people that the vehicle contains a high voltage battery.

- If the READY indicator is ON the high voltage system is active.

- If possible, be sure to check the READY indicator on the instrument cluster and verify that the READY indicator is OFF and the high voltage system is stopped.
3-1 Preparation Items

<table>
<thead>
<tr>
<th>Preparation Items</th>
<th>Specification</th>
<th>Purpose</th>
</tr>
</thead>
<tbody>
<tr>
<td>PPE (personal protective equipment):</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Insulated gloves</td>
<td>Up to 1,000V</td>
<td>For protection from high voltage electrical shock</td>
</tr>
<tr>
<td>Insulated shoes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Safety shield</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Wrenches</td>
<td>Size: 10mm</td>
<td>To remove the 12V battery terminal bolt.</td>
</tr>
<tr>
<td>Solvent resistant protection gloves</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Solvent resistant protection shoes</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Absorbent pad</td>
<td>The same pad used for internal combustion engine fluids can be used.</td>
<td>To absorb any Li-ion battery electrolytic solution leakage.</td>
</tr>
<tr>
<td>Standard fire fighting equipment</td>
<td>Standard fire fighting equipment. Depending on type of fire (vehicle or battery) use standard fire fighting equipment (water or extinguisher).</td>
<td>To extinguish a fire.</td>
</tr>
<tr>
<td>Insulated tape</td>
<td>Insulating</td>
<td>To cover any damaged harnesses to protect from and prevent electrical shock. Tape should cover all bare or damaged wire.</td>
</tr>
</tbody>
</table>
3-2 Personal Protective Equipment (PPE) and Insulated Tools

3-2.1 Personal Protective Equipment (PPE) Protective Wear Control

Perform an inspection of the Personal Protective Equipment (PPE) items before beginning work. Do not use any damaged PPE items.

3-2.2 Daily Inspection

This inspection is performed before and after use. The worker who will be using the items should perform the inspection and check for deterioration and damage.

- Insulated rubber gloves should be inspected for scratches, holes and tears. (Visual check and air leakage test)
- Insulated safety boots should be inspected for holes, damage, nails, metal pieces, wear or other problems on the soles. (Visual check)
- Insulated rubber sheet should be inspected for tears. (Visual check)

3-2.3 Insulated Tools

When performing work at locations where high voltage is applied (such as terminals), use insulated tools meeting 1,000V/300A specifications.

3-3 Discharge Procedures

Do not perform this procedure if the battery is damaged. If you are unsure of battery damage, use extreme caution and wear appropriate Personal Protective Equipment (PPE).

Li-ion battery discharging must take place before dismantling. Sufficient discharging can be achieved by following these steps.

1. Place the shift selector into the Park (P) position
2. Apply the parking brake.
3. Set wheel chocks to ensure the vehicle is completely immobilized.
4. Fasten the driver seat belt and close the driver door.
5. Apply foot brake and press the ignition switch to turn the system ON. Confirm READY indicator in instrument cluster turns ON.
 a. If the engine starts, leave the engine running until reaching normal operating temperature and the idling stops. It may take more than 10 minutes for complete engine warm up and idling to stop.
 b. If the engine is at normal operating temperature and does NOT start, move on to next step.
6. Remove the shift lock cover (A) using a suitable tool.
7. Push down the shift lock (B) as shown in the illustration.
8. Push the shift selector button (C) and move the shift selector to Neutral (N) position (D) while holding down the shift lock.

NOTE:

DO NOT press accelerator or foot brake after moving the shift selector to the Neutral (N) position. Otherwise Li-ion battery will start to be charged.

NOTE:
The engine must not be running at this time. If the engine has restarted, repeat the previous steps.

9. Release the parking brake.
10. Unbuckle the seat belt and open the driver door. The READY indicator should remain ON and the engine should not be running.
11. Turn ON electric devices such as headlamps, A/C (set to the coldest temperature) and rear window defogger to discharge the high voltage battery. Allow approximately 15 minutes to discharge. Discharge is complete when the READY indicator (B) (green) turns OFF, the hybrid system warning indicator (C) (orange) turns ON and the message display indicates “Li-ion battery low”.

DG–20
12. Press the ignition switch (A) to turn the system OFF.

Please contact following number if the vehicle could not be discharged.
- 1-800-662-6200 (US) or 1-800-361-4792 (Canada)
- Hours of operation are 8am - 5pm (Monday-Friday) Eastern, Central and Pacific time zones.

3-4 How to Handle a Damaged Vehicle

3-4.1 High Voltage System Shut-Down Procedure

Any of the following procedures can shut down the high voltage system. The dismantling operation can only begin after shutting down the high voltage system. If the vehicle is heavily damaged, for example the Li-ion battery is deformed, broken or cracked, appropriate PPE must always be used and the Li-ion battery and high voltage components must not be touched.

⚠️ DANGER

- Failure to properly shut down the high voltage system before the dismantling procedures are performed will result in serious injury or death from electrical shock. To prevent serious injury or death, NEVER touch high voltage harnesses or components without always wearing appropriate Personal Protective Equipment (PPE). PPE must always be worn when touching or working on high voltage components.
- When contact with high voltage components or high voltage harnesses is unavoidable, or when there is risk of such contact, you must always wear appropriate PPE. PPE must always be worn when touching or working on high voltage components.
The vehicle contains parts that contain powerful magnets. If a person who is wearing a pacemaker or other medical device is close to these parts, the medical device may be affected by the magnets. Such persons must not perform work on the vehicle.

Be sure to verify that the READY indicator is off (if possible), and the high voltage system is stopped.

After the high voltage system is shut down, please wait approximately ten (10) minutes for complete discharge of the high voltage capacitor. While waiting, do not operate any vehicle functions.

After shutting down the high voltage system and removing the 12V battery negative (-) terminal, wait at least three (3) minutes to discharge the air bag capacitor. Even though the 12V battery negative (-) is disconnected, the Supplemental Restraint System (SRS) air bag maintains voltage at least three (3) minutes. During this time, there is a possibility of sudden SRS air bag inflation due to harness short circuit or damage and it may cause serious injuries.

The 12V system will remain active even after the 12V battery negative (-) terminal is removed while the high voltage system is active. This is because the charging system will not shut down and power will be supplied to the 12V system and high voltage system continuously.

Before disconnecting the 12V battery terminal, if necessary, lower the windows, adjust the steering column, adjust the seats, unlock the doors, open the liftgate, etc. as required. Once the 12V battery is disconnected, power controls will not operate.

Powering Down the High Voltage System

The high voltage system can be shut down with any 1 of the following procedures:

- Turn OFF the power switch and disconnect the 12V battery. Refer to Primary Procedure (DG–23).
- Remove the underhood fuse for the high voltage control system and disconnect the 12V battery. Refer to Alternate Procedure 1 (Remove Fuses) (DG–25).
- Remove the service plug and disconnect the 12V battery. Refer to Alternate Procedure 2 (Remove Service Plug) (DG–27).
Primary Procedure

NOTE:

Before disconnecting the 12V battery terminal, if necessary, lower the windows, adjust the steering column, adjust the seats, unlock the doors, etc. Once 12V battery is disconnected, power controls will not operate.

1. If possible, check the READY indicator status in the instrument cluster. If it is on, the high voltage system is active.
2. Place the shift selector in the Park (P) position.

3. Push the ignition switch once to turn OFF the high voltage system. Verify that the READY indicator is off and then continue to the next steps to open the hood for 12V battery negative cable access.

If the READY indicator does not turn off, refer to Alternate Procedure 1 (Remove Fuses) (DG–25)

4. If possible, keep the INFINITI Intelligent Key™ at least 5 meters (16 feet) away from the vehicle.

5. Pull release handle (1) and pull up release lever (2) to open hood.
6. Remove traction motor inverter cover (1).

7. Disconnect negative (-) battery cable and cover it with insulated tape.

8. **Wait approximately ten (10) minutes for complete discharge** of the high voltage capacitor after the battery cable has been disconnected.

Alternate Procedure 1 (Remove Fuses)

NOTE:
Before removing any fuses, if necessary, lower the windows, adjust the steering column, adjust the seats, unlock the doors, etc. Once fuses are removed, power controls will not operate.

1. Pull release handle (1) and pull up release lever (2) to open the hood.

2. Release clips (A) and remove fuse box cover (1).
 →: Vehicle front

3. Remove IGCT RLY fuse (F/L V IGCT RLY 50A).
4. If you cannot identify the correct fuse, remove all the fuses.

WARNING

⚠️ To avoid unintended reinstallation and risk of electrical shock and severe personal injury or death, the dismantler should carry the fuse or fuses on his/her person and cover the fuse box with insulated tape.
5. Remove traction motor inverter cover (1).

6. Disconnect negative (-) battery cable and cover it with insulated tape.

7. **Wait approximately ten (10) minutes for complete discharge** of the high voltage capacitor after the fuse panel and battery cable have been disconnected.

Alternate Procedure 2 (Remove Service Plug)

⚠️ **DANGER**
- Do not remove the service plug without always wearing appropriate Personal Protective Equipment (PPE) to help protect the dismantler from serious injury or death by electrical shock.
- Immediately cover the service plug socket with insulated tape. The Li-ion battery retains high voltage power even when the service plug is removed. To avoid electric shock, NEVER touch the terminals inside the socket.

⚠️ **WARNING**
To avoid unintended reinstallation and risk of electrical shock and severe personal injury or death, the dismantler should carry the service plug on his/her person while work is in progress.

NOTE:

Before disconnecting the 12V battery terminal, if necessary, lower the windows, adjust the steering column, adjust the seats, unlock the doors, etc. Once 12V battery is disconnected, power controls will not operate.

1. If possible, check the READY indicator status in the instrument cluster. If it is on, the high voltage system is active.
2. Place the shift selector in the Park (P) position.
3. Push the ignition switch once to turn OFF the high voltage system. Then verify whether the READY indicator is off.
 If the READY indicator does not turn off, continue to the next steps.
4. If possible, keep the INFINITI Intelligent Key™ at least 5 meters (16 feet) away from the vehicle (except to open the liftgate as noted below).

5. Open the liftgate using any of the following:
 a. liftgate switch on the lower LH side of the instrument panel.

 b. liftgate button on the INFINITI Intelligent Key™ [press for longer than one (1) second].

 c. liftgate opener switch (located above license plate)*
d. If the liftgate cannot be opened with the instrument panel switch, liftgate opener switch, or key fob due to a discharged battery, follow these steps:
 - Remove the cover (A) on the inside of the liftgate.
 - Move the lever (B) as illustrated to open liftgate.

<table>
<thead>
<tr>
<th>Method</th>
<th>Shift Selector Position</th>
<th>Ignition Switch Status</th>
</tr>
</thead>
<tbody>
<tr>
<td>a</td>
<td>P or N</td>
<td>Any</td>
</tr>
<tr>
<td>b</td>
<td>P</td>
<td>OFF</td>
</tr>
<tr>
<td>c*</td>
<td>Any</td>
<td>Any</td>
</tr>
<tr>
<td>d</td>
<td>Any</td>
<td>Any</td>
</tr>
</tbody>
</table>

* You must have the INFINITI Intelligent Key™ within approximately 1 meter (3 feet) range of liftgate opener switch to use the liftgate opener switch function.

6. Open luggage board.

7. Open service plug access cover.
8. Remove the service plug (A) by pulling the locking lever (B), then pressing the locking tab (C) and rotating the handle (D) fully outward. Using the handle, pull the service plug (E) completely out of its socket.

9. Cover the service plug socket with insulated tape.

10. **Wait approximately ten (10) minutes for complete discharge** of the high voltage capacitor after the service plug has been removed.

11. Pull release handle (1) and pull up release lever (2) to open hood.

12. Remove traction motor inverter cover (1).
13. Disconnect negative (-) battery cable and cover it with insulated tape.

3-4.2 Cutting the Vehicle Body

⚠️ DANGER
- Do not cut into high voltage related areas to avoid severe personal injury or death.
- Do not cut into the Li-ion battery to avoid severe personal injury or death.
- When removing parts, NEVER touch the high voltage parts or the insides of the exposed orange-colored high voltage cables to avoid severe personal injury or death. Personal Protective Equipment (PPE) must always be worn when touching or working on high voltage components.

⚠️ WARNING
- To avoid unintended reinstallation and risk of electrical shock and severe personal injury or death, the dismantler should carry the fuses or service plug on his/her person while work is in progress.

⚠️ WARNING
- Do not cut air bag parts to avoid unintended deployment of the air bags and the risk of severe personal injury or death.

If approximately (10) minutes have passed since the rescuer shut down the high voltage system [refer to 3-4.1 High Voltage System Shut-Down Procedure (DG–21)], then the dismantler can cut the vehicle except for the Li-ion battery.

DO NOT cut the Li-ion battery due to possible electrocution risk and electrolyte solution leakage.
SRS Air Bag System Components Location

The SRS air bag system must not be cut as there is a risk of short circuit and unintentional deployment of the SRS. However, the vehicle can be cut (except inflators) under the following conditions:

- The front, side and curtain air bags have deployed.
- At least three (3) minutes have passed after the 12V battery negative (-) cable has been disconnected and the high voltage system has been shut down.

1. Roof-mounted curtain side-impact and rollover supplemental air bag inflators
2. Air bag control unit (ACU)
3. Supplemental front-impact air bag modules
4. Pressure sensors (driver’s side door shown; passenger side door similar)
5. Crash zone sensor
6. Satellite sensors (RH shown, LH similar)
7. Front seat-mounted side-impact supplemental air bags
8. B-pillar satellite sensors (RH shown, LH similar)
9. Seat belts with pretensioners
10. Occupant classification sensors (weight sensors – located on passenger seat frame)
11. Occupant classification system control unit
INFINITI Emergency Contact
1-800-662-6200 (US) or 1-800-361-4792 (Canada)
Hours of Operation: 8am-5pm (Monday-Friday)
Eastern, Central and Pacific Time Zones

Key

- High voltage component or harness (Can be cut only after the high voltage system shut-down procedure has been completed.)
- NEVER CUT - High voltage component
- 12V Battery

DANGER

Never cut electrical components/batteries for any reason. Death or serious personal injury will result.

Traction Motor
High voltage (Li-ion) battery
12V battery
High voltage harness
Traction Motor Inverter

July 2013

Nissan North America, Version (1)
3-4.3 Water Submersion

DANGER

Damage level of submerged vehicle may not be apparent. Handling a submerged vehicle without appropriate Personal Protective Equipment (PPE) will result in serious injury or death from electrical shock.

WARNING

- The ignition switch of the submerged vehicle must be turned OFF first, if possible. Then the vehicle must be completely out of the water and drained to avoid electrical shock.
- Always wear appropriate Personal Protective Equipment (PPE) and remove/drain water before removing the service plug when working on a vehicle after a fire or submersion to avoid electrical shock.
- If the vehicle is in the water, to avoid electrical shock NEVER touch the high voltage components, harnesses or service plug. PPE must always be worn when touching or working on high voltage components.

3-4.4 Vehicle Fire

WARNING

- Always utilize full Personal Protective Equipment (PPE) and self-contained breathing apparatus during fire fighting operations. Smoke from a QX60 HYBRID vehicle fire is similar to smoke from a conventional vehicle fire.
- In the case of extinguishing a fire with water, large amounts of water from a fire hydrant (if possible) must be used. DO NOT extinguish fire with a small amount of water.

CAUTION

In the event of a small fire, a Type ABC fire extinguisher may be used for an electrical fire caused by wiring harnesses, electrical components, etc. or oil fire.

In case of vehicle fire, contact fire department immediately and extinguish the fire if possible. If you must walk away from the vehicle, notify an appropriate responder or a rescue person of the fact that the vehicle is a hybrid vehicle that contains a high voltage system and warn all others.
3-4.5 Li-ion Battery Damage and Fluid Leaks

![WARNING]

The Li-ion battery contains electrolyte solution. To avoid exposure to electrolyte solution and serious personal injury, always wear appropriate solvent resistant Personal Protective Equipment (PPE) and read the following precautions:

- Electrolyte solution is a skin irritant.
- Electrolyte solution is an eye irritant – If contact with eyes, rinse with plenty of water and see a doctor immediately.
- If electrolyte leak occurs, wear appropriate solvent resistant PPE and use a dry cloth to clean up the spilled electrolyte. Be sure to adequately ventilate the area.
- Electrolyte solution is highly flammable
- Electrolyte liquid or fumes that have come into contact with water vapors in the air will create an oxidized substance. This substance may irritate skin and eyes. In these cases, rinse with plenty of water and see a doctor immediately.
- Electrolyte fumes (when inhaled) can cause respiratory irritation and acute intoxication. Move to fresh air and wash mouth with water. See a doctor immediately.

In cases of battery case breach or electrolyte leakage, contact the fire department immediately. If you must walk away from the vehicle, notify an appropriate responder of the fact that the vehicle is an electric car and contains a high voltage system and warn all others.

Li-ion Battery Electrolyte Solution Characteristics:
- Clear in color
- Sweet odor
- Similar viscosity to water
- Since the Li-ion battery is made up of many small sealed battery modules, electrolyte solution leakage should be minimal.

NOTE:

Other fluids in the vehicle (such as engine oil, washer fluid, brake fluid, coolant, etc.) are the same as those in a conventional vehicle.
4. Jump Starting

To start the hybrid system with a booster battery, the instructions and precautions below must be followed.

WARNING

If done incorrectly, jump starting can lead to a 12V battery explosion, resulting in severe personal injury or death. It could also damage your vehicle.

Jump starting provides power to the 12V system to allow the electrical systems to operate. The electrical systems must be operating to allow the Li-ion battery to be charged. Jump starting does not charge the Li-ion battery.

Discharged 12V battery may cause the following issues:

- The instrument cluster cannot be displayed while the ignition switch is turned ON. (The hybrid system cannot start.)
- Headlamps, horn, etc. are weak.

WARNING

- To avoid electrical shock, the high voltage Li-ion battery CANNOT be jump started.
- Explosive hydrogen gas is always present in the vicinity of the 12V battery. Keep all sparks and flames away from the 12V battery. Make sure the vent tube is mounted.
- Do not allow battery fluid to come into contact with eyes, skin, clothing or painted surfaces. Battery fluid is a corrosive sulfuric acid solution that can cause severe burns. If the fluid comes into contact with anything, immediately flush the contacted area with water.
- The booster battery must be rated at 12 volts. Use of an improperly rated battery can damage the vehicle.
- Whenever working on or near a 12V battery, always wear suitable eye protectors (for example, goggles or industrial safety spectacles) and remove rings, metal bands, or any other jewelry. Do not lean over the 12V battery when jump starting.
- Do not attempt to jump start a frozen battery. It could explode and cause serious injury.
- QX60 HYBRID is equipped with an automatic cooling fan. It could come on at any time. Keep hands and other objects away from it.
- Always follow the jump starting instructions below. Failure to do so could result in damage to the charging system and cause personal injury.
NOTE:

Jumper cable connections under the hood of the QX60 HYBRID are not connected directly to a battery. They are connected to chassis ground and a fuse box terminal. Refer to the following instructions and the above illustration.

1. Locate the fuse box behind the engine air cleaner.
2. Push the tab in and lift up (A) to remove the fuse box cover and expose the remote positive battery terminal (B).
3. If the booster battery is in another vehicle, position the two vehicles to bring their batteries near each other.

DO NOT allow the two vehicles to touch.
4. Apply the parking brake. Move the selector lever the P (Park). Switch off all unnecessary electrical systems (lights, heater, air conditioner, etc.).
5. Remove vent caps on the battery (if so equipped) of the vehicle with battery for booster. Cover the battery with an old cloth (F) to reduce explosion hazard.
6. Connect jumper cables in the sequence as illustrated (B→C→D→E).

CAUTION

- Always connect positive (+) to positive (+) and negative (-) to body ground (for example, as illustrated), not to the 12V battery.
- Make sure the jumper cables do not touch moving parts in the engine compartment and that the cable clamps do not contact any other metal.

7. Start the engine of the booster vehicle and let it run for a few minutes.
8. Hold down the brake pedal and press the START button. The vehicle instruments and gauges will light up, and the green READY light will come ON.
If the green READY light does not come on, press the START button to turn the Hybrid System OFF. Carefully disconnect the negative cable then the positive cable. Have the vehicle taken to an INFINITI retailer for repair.

9. After the green READY light in the meter display comes ON, carefully disconnect the negative cable and then the positive cable.

10. Replace the vent caps (if so equipped). Be sure to dispose of the cloth used to cover the vent holes as it may be contaminated with corrosive acid.

11. Reinstall the fuse box cover.

NOTE:

If it is not possible to turn the hybrid system ON by following this procedure, contact an INFINITI retailer immediately.

4-2 Shift Selector Lever Lock Release

If the 12V battery is low or discharged, the selector lever cannot be moved from the Park (P) position. If a booster battery is not available, the selector lever lock can be manually released. To manually release the selector lever lock, perform the following procedure:

1. Push the ignition switch to the LOCK or OFF position.
2. Apply the parking brake.
3. Remove the shift lock cover (A) using a suitable tool.
4. Push down the shift lock (B) using a suitable tool as shown in the illustration.
5. Push the selector lever button (C) and move the selector lever to the Neutral (N) position (D) while holding down the shift lock.
5. Storing the Vehicle

WARNING

The service plug must be removed to shut down the high voltage system for storage. Do not store a vehicle inside a structure. Keep the vehicle away from other vehicles if the li-ion battery is severely damaged. There is possibility of delayed fire from a severely damaged li-ion battery.

If the QX60 HYBRID needs to be stored or left unattended, the high voltage system must be shut down by removing the service plug [refer to Alternate Procedure 2 (Remove Service Plug) (DG–27)] and a sign put on the vehicle indicating it is a hybrid vehicle with high voltage dangers. For example:
Person in charge:

DO NOT TOUCH!

IN PROGRESS.

HIGH VOLTAGE REPAIR

DANGER:

HIGH VOLTAGE REPAIR IN PROGRESS.

DO NOT TOUCH!

Person in charge:____________

Copy this page and put it after folding on the roof of the vehicle in service.
6. Dismantling Information

Removal or repair of the high voltage battery requires special tools and specific training. INFINITI strongly recommends that only certified INFINITI retailer technicians perform these operations.

6-1 Precautions for Handling High Voltage Lithium-ion (Li-ion) Battery

⚠️ DANGER

- ⚠️ Because QX60 HYBRID contains a high voltage (Li-ion) battery, there is the risk of electric shock, electric leakage, or similar accidents if the high voltage components or vehicle is handled incorrectly. Be sure to follow the correct work procedures when performing inspection and dismantling.
- ⚠️ If it is necessary to touch any of the high voltage harnesses or components you must always wear appropriate Personal Protective Equipment (PPE) and properly shut-down the high voltage system by removing the service plug.
- ⚠️ Be sure to always wear appropriate PPE before beginning work on the high voltage system.
- ⚠️ Be sure to remove the service plug in order to shut-down the high voltage system before performing inspection or dismantling of high voltage system harnesses and parts.
- ⚠️ If the vehicle is heavily damaged, for example the Li-ion battery is deformed, broken, or cracked; appropriate PPE must always be used at all times to avoid electrical shock.
WARNING

- The colors of the high voltage harnesses and connectors are all orange. Orange “High Voltage” labels are applied to the Li-ion battery and other high voltage devices. Do not touch the Li-ion battery or other high voltage devices without always wearing appropriate PPE.

- Clearly identify the persons responsible for high voltage work and ensure that other persons do not touch the vehicle. When not working, cover high voltage parts with an insulating cover sheet and sign or similar item to prevent other persons from contacting them.

- Be sure to put the removed service plug in your pocket and carry it with you so another person does not accidentally reinstall it while work is in progress.

- The high voltage battery retains high voltage at all times. Personal Protective Equipment (PPE) must always be worn when touching or working on high voltage components to avoid risk of electrical shock and severe personal injury or death.

- Immediately insulate disconnected high voltage connectors and terminals with insulated tape.

- The vehicle contains parts that contain powerful magnets. If a person who is wearing a pacemaker or other medical device is close to these parts, the medical device may be affected by the magnets. Such persons must not perform work on the vehicle.

- Because this vehicle uses components that contain high voltage and powerful magnetism, do not carry any metal products which may cause short circuits, or any magnetic media (cash cards, credit cards, etc.) which may be damaged when working on the vehicle.

- Keep removed Li-ion battery packs away from rain to avoid electric shock.

- Do not heat removed battery packs higher than 158° F (70° C).
6-2 Lithium-ion (Li-ion) Battery Pack Removal

6-2.1 Exploded Views

Li-ion Battery Exploded View

1. Battery inlet duct
2. DC/DC converter
3. Li-ion battery
4. Battery outlet duct B
5. Battery outlet duct
6. Service plug
7. DC/DC converter outlet duct
8. DC/DC converter bracket
9. Battery inlet duct B
10. DC/DC converter inlet duct

← : Vehicle front
1. Rear ventilator duct 1
2. Rear ventilator duct 2
3. Rear ventilator duct 3
4. Rear ventilator duct lower
5. Rear cooling unit assembly
6. Rear ventilator duct upper

6-2.2 Removal Procedure

1. Discharge high voltage battery. Refer to Discharge Procedures (DG–19).
2. Remove the service plug. Refer to Alternate Procedure 2 (Remove Service Plug) (DG–27).
3. Release clips that retain the seat back board to the storage box lid.
4. Open the storage box lid.
5. Remove the BOSE subwoofer (2) (if equipped) from the storage box (5) using the following steps.

- Remove spare tire clamp (1) from bracket (4).
- Lift subwoofer (2) to disconnect harness (3) then remove subwoofer (2) from storage box (5).

6. Remove back door kicking plate by releasing the back door kicking plate clips and pawls using a suitable tool.

 ![Pawl and Clip Diagram]

 ○ : Pawl
 △ : Clip

7. Remove storage box screws and storage box.
8. Release the storage box side finisher clips using a suitable tool, then remove.
9. Remove the third row seat front bolts covers and bolts (2).
10. Pull the third row seatback release lever (1) and fold down the seatbacks (LH/RH).
11. Remove bolts (A) and position storage box front brackets (1) aside. Then remove seat rear bolts (B) and the third row seat.

12. Partially remove the RH and LH rear door welt.
13. Remove the seat belt bolt cover and bolt from the RH and LH luggage side lower finisher.
14. Remove the seat belt from the RH and LH luggage side lower finisher.
15. Remove the RH and LH luggage side lower finisher coat hook bolt and coat hook.
16. Remove the RH and LH luggage side lower finisher cover, and then remove the RH and LH luggage side lower finisher bolt (A).

*: Vehicle front

17. Disconnect the harness connector from the power socket (LH only).
18. Remove the luggage side lower finisher RH and LH.
19. Remove the rear ventilator ducts.

Use the following steps and refer to the Exploded Views (DG–43).
 a. Remove the clips and rear ventilator duct 1 (1).
 b. Remove bolts securing the third row seat cross member and third row seat cross member (1).

 c. Remove the clips and rear ventilator duct 2 (2).
 d. Remove the screws and the rear ventilator duct 3 (3).
 e. Remove the clips and rear ventilator duct upper (6).
 f. Remove the storage box bracket (RH).
 g. Remove the nut and rear ventilator duct lower (4).
20. Disconnect harness connector (1) from Li-ion battery.

⚠️ **DANGER**
Immediately protect the terminals of the disconnected high voltage harness connector socket using insulated tape so that they are not exposed.

21. Remove nut (A) and disconnect DC/DC converter ground (1).

⚠️ **DANGER**
Touching high voltage components without wearing appropriate Personal Protective Equipment (PPE) will cause electrocution.

22. Release clip, then disconnect harness connector (1) from DC/DC converter.

⚠️ **DANGER**
Touching high voltage components without wearing appropriate Personal Protective Equipment (PPE) will cause electrocution.

23. Remove nuts (A) and battery inlet duct B (1).

⚠️ **DANGER**
Touching high voltage components without wearing appropriate Personal Protective Equipment (PPE) will cause electrocution.
24. Release clips (A) and remove DC/DC converter inlet duct (1).

⚠️ **DANGER**

Touching high voltage components without wearing appropriate Personal Protective Equipment (PPE) will cause electrocution.

25. Remove nuts (A) and DC/DC converter (1).

⚠️ **DANGER**

Touching high voltage components without wearing appropriate Personal Protective Equipment (PPE) will cause electrocution.

26. Remove bolts (A) and nuts (B), then DC/DC converter bracket.

⚠️ **DANGER**

Touching high voltage components without wearing appropriate Personal Protective Equipment (PPE) will cause electrocution.

27. Release clip (A) and remove nut (C), then disconnect main harness connector (B) from Li-ion battery.

⚠️ **DANGER**

Touching high voltage components without wearing appropriate Personal Protective Equipment (PPE) will cause electrocution.
28. Disconnect inverter harness connector (A) from Li-ion battery.

![DANGER]

Touching high voltage components without wearing appropriate Personal Protective Equipment (PPE) will cause electrocution.

29. Remove gas vent hose (1) from floor panel.

![DANGER]

Touching high voltage components without wearing appropriate Personal Protective Equipment (PPE) will cause electrocution.

30. Remove bolts (A) and Li-ion battery.

![DANGER]

Touching high voltage components without wearing appropriate Personal Protective Equipment (PPE) will cause electrocution.

6-3 Li-ion Battery Recycling

The high voltage battery is recyclable. For information regarding recycling of the high voltage battery, contact the nearest INFINITI retailer or INFINITI Consumer Affairs at: United States: 1-800-662-6200 or in Canada: 1-800-361-4792.